LA-UR-04-0878 Approved for public release; distribution is unlimited. Title: MSTK: MeSh ToolKit, v1.2 User's Manual (Draft) Author(s): Rao Garimella (rao@lanl.gov) T-7, LANL Submitted to: | Software User Manual Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. # MSTK: Mesh Toolkit, v1.2 - DRAFT Rao V. Garimella Mathematical Modeling and Analysis (T-7), Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA. E-mail: rao@lanl.gov January 27, 2004 #### 1 Introduction MSTK or Mesh Toolkit is a mesh framework that allows users to represent, manipulate and query unstructured 3D arbitrary topology meshes in a general manner without the need to code their own data structures. MSTK is a flexible framework in that it allows (or will eventually allow) a wide variety of underlying representations for the mesh while maintaining a common interface. It will allow users to choose from different mesh representations either at initialization or during the program execution so that the optimal data structures are used for the particular algorithm. The interaction of users and applications with MSTK is through a functional interface that acts as though the mesh always contains vertices, edges, faces and regions and maintains connectivity between all these entities. MSTK allows for the simultaneous existence of an arbitrary number of meshes. However, any entity in MSTK can belong to only one mesh at a time. MSTK will eventually support distributed meshes for parallel computing. However, this is still not in place. MSTK will soon allow applications to attach application or field data to entities. This data may be integers, reals (doubles), integer vectors, real (double) vectors, integer tensors, real (double tensors) and pointers. The basis for development of MSTK is laid out in the following paper: Garimella, R. "Mesh Data Structure Selection for Mesh Generation and FEA Applications," *International Journal of Numerical Methods in Engineering*, v55 n4, pp. 441-478, 2002. In the following sections, the data types of MSTK will be described followed by a description of the functional interface. The MSTK file format will be described in the last section. ### 2 MSTK Data Types *List_ptr*: Handle to a List object **Mesh_ptr**: Handle to a Mesh object. **MVertex_ptr**: Handle to a Mesh Vertex object (Topological Dimension 0) **MEdge_ptr**: Handle to a Mesh Edge object (Topological Dimension 1) **MFace_ptr**: Handle to a Mesh Face object (Topological Dimension 2) **MRegion_ptr**: Handle to Mesh Region object (Topological Dimension 3) **MEntity_ptr**: Handle to a generic Mesh Entity object. Any of the above types of entities can be cast as **MEntity_ptr** **GModel_ptr**: Handle to a Geometric Model object **GEntity_ptr**: Handle to a Geometric Entity object **Rep Type**: Enumerated type describing the type of mesh representation. Can be UN-KNOWN_REP, F1, F4, R1, R2, R4. See Appendix A for schematics of these representations Currently only representation types F1 and F4 are supported \boldsymbol{MFType} : Enumerated type for mesh face type Can be FDELETED, FUNKNOWN, TRI, QUAD, POLYGON **MRType**: Enumerated type for mesh region type Can be RDELETED, RUNKNOWN, TET, PYRAMID, PRISM, HEX, POLYHED #### 3 MSTK Functional Interface #### 3.1 List Lists of entities in MSTK are returned as sets of type *List_ptr*. The following are the set operations available in MSTK: - List_ptr List_New(int inisize): Create a new set with an initial size, inisize. If inisize is 0, the initial size is set to be 10. - void List_Delete(List_ptr l): Delete a set. - List_ptr List_Compress(List_ptr l): Compress a set. Doing this while an algorithm is iterating through the set can currently cause problems!! Calling List_Compress could change the pointer for the set due to reallocation. - $List_ptr$ List_Copy($List_ptr$ 1): Return a copy of a set. - List_ptr List_Add(List_ptr 1, void *entry): Add an entry to the set. The entry is appended to the end of the set. - List_ptr List_ChknAdd(List_ptr 1, void *entry): Add an entry to a set only if it is not already in the set. - int List_Rem(List_ptr l, void *entry): Remove an entry from the set. Returns 1 if successful, 0 otherwise. - int List_Remi(List_ptr l, int i): Remove the i'th valid entry in the set. Returns 1 if successful, 0 otherwise. - int List_Replace(List_ptr l, void *entry, void *nuentry): Replace 'entry' with 'nuentry' in set. Returns 1 if successful, 0 otherwise. - int List_Replacei(List_ptr 1, int i, void *nuentry): Replace the i'th valid entry in the set with 'nuentry'. Returns 1 if successful, 0 otherwise. - int List_Contains(List_ptr 1, void *entry): Returns 1 if set contains the entry, 0 otherwise. - int List_Locate(List_ptr 1, void *entry): Returns the positional index of the entry in the set. Returns -1 if the set does not contain the entry. - void *List_Entry(List_ptr l, int i): Return the i'th valid entry in the set. Returns a NULL pointer if the i'th valid entry could not be found. - void *List_Next_Entry(List_ptr 1, int *i): Return the next valid entry in the set. This routine works like an iterator. To start iterating through the set, set the iteration index i=0 and call the routine to get the first entry in the set. Subsequent calls to the routine will iterate through the entries in the set. The routine will return a NULL to indicate that the end of the set is reached. The value of the iteration index i will be modified by the routine on each call to indicate where in the set it is. This value should not be modified externally while iterating through the set. Also, no specific meaning be derived from from the iteration index by other applications since the internal implementation and interpretation of the index may change at any time. int List_Num_Entries(List_ptr l): Return the number of entries in a set #### 3.2 Mesh Object A mesh object is a set of vertices (nodes) possibly connected by other entities such as edges, faces, regions. Depending on the representation chosen and type of mesh, some or all of the entities may be explicitly stored. Full representations contain all types of entities up to the highest dimension of the mesh. For example, a full representation of a tetrahedral mesh contains vertices, edges, faces and regions. However, one type of reduced representation of this mesh may contain only vertices and regions. For a surface mesh, a full representation includes vertices, edges and faces while a reduced representation only has vertices and faces. Also, depending on the type of representation, some adjacencies (information about which entities are connected to which other entities) are stored and others are derived. - Mesh_ptr MESH_New(RepType type): Initialize a new mesh object with the given representation type which can be F1, F2, F3, F4, F5, F6, R1, R2, R3, R4. Not all of these types are implemented. If the representation type is not known at the present time (e.g. before reading the mesh from a file), the representation type of UNKNOWN_REP can be specified. Note that this only initializes a mesh object, it does not create or generate a mesh which is the work of high level mesh generation routines. - int MESH_InitFromFile(Mesh_ptr mesh, const char *filename): Initialize or read a mesh from file into the given mesh object. Returns 1 if successful, 0 otherwise. - void MESH_WriteToFile(Mesh_ptr mesh, const char *filename): Save a mesh to a filename. The file is created if it does not exists. It is recommended that the .mstk extension be used for MSTK mesh files. However, there is no such requirement. - **GModel_ptr** MESH_GModel(*Mesh_ptr* mesh): Return a handle to the underlying geometric model. If there is no geometric model associated with the mesh, NULL pointer is returned. - RepType MESH_RepType(Mesh_ptr mesh): Representation type currently being used by the mesh. - int MESH_Num_Vertices(Mesh_ptr mesh): Number of vertices in the mesh. - int MESH_Num_Edges(Mesh_ptr mesh): Number of edges in the mesh. For reduced representations, this routine returns 0 since it is impractically expensive to count the number of edges when they do not explicitly exist. Applications must find a way to avoid using this routine for reduced representations. - int MESH_Num_Faces(Mesh_ptr mesh): Number of faces in the mesh. For reduced representations R1 or R2, this routine counts only the faces that are explicitly represented i.e. faces not connected to any mesh region. Therefore, a value of 0 will be returned for the number of faces of a tetrahedral mesh with representation R1 or R2 but the correct number will be reported for a tetrahedral mesh in other representations. Also, the correct number will be reported for the number of faces in a surface mesh in representation R1 or R2. Therefore, this routine must be used carefully. - int MESH_Num_Regions(Mesh_ptr mesh): Number of regions in the mesh. - $MVertex_ptr$ MESH_Vertex($Mesh_ptr$ mesh, int i): Return the i'th vertex in the mesh. Returns NULL if i < 0 or i > number of mesh vertices. - MEdge_ptr MESH_Edge(Mesh_ptr mesh, int i): Return the i'th edge in the mesh. Returns NULL if i < 0 or i > number of mesh edges. Returns NULL for reduced representations. - MFace_ptr MESH_Face(Mesh_ptr mesh, int i): Return the i'th face in the mesh. Returns NULL if i < 0 or i > number of mesh faces. Only faces explicitly represented in the mesh are returned for reduced representation (See explanation for MESH_Num_Faces). - $MRegion_ptr$ MESH_Region($Mesh_ptr$ mesh, int i): Return the i'th region in the mesh. Returns NULL if i < 0 or i > number of mesh region. - MVertex_ptr MESH_Next_Vertex(Mesh_ptr mesh, int *idx): Returns the next vertex while iterating through the vertices of the mesh. See the routine List_Next_Entry above for an explanation of how the iteration works. - MEdge_ptr MESH_Next_Edge(Mesh_ptr mesh, int *idx): Returns the next edge while iterating through the edges of the mesh. See the routine List_Next_Entry above for an explanation of how the iteration works. The routine always returns NULL for reduced representations. - MFace_ptr MESH_Next_Face(Mesh_ptr mesh, int *idx): Returns the next face while iterating through the faces of the mesh. See the routine List_Next_Entry above for an explanation of how the iteration works. Only faces explicitly represented in the mesh are returned for reduced representation (See explanation for MESH_Num_Faces). - void MESH_Add_Vertex(Mesh_ptr mesh, MVertex_ptr v): Add a vertex to the mesh. It is assumed that the vertex and its coordinates set are properly defined. - void MESH_Add_Edge(Mesh_ptr mesh, MEdge_ptr e): Add an edge to the mesh. It is assumed that the edge is and its topology is defined. - void MESH_Add_Face(Mesh_ptr mesh, MFace_ptr f): Add a face to the mesh. It is assumed that the face and its topology is properly defined. - void MESH_Add_Region(Mesh_ptr mesh, MRegion_ptr r): Add a region to the mesh. It is assumed that the region and its topology is properly defined. - void MESH_Rem_Vertex(Mesh_ptr mesh, MVertex_ptr v): Remove vertex from mesh. Vertex is not deleted and must be deleted afterward separately. - void MESH_Rem_Edge(Mesh_ptr mesh, MEdge_ptr e): Remove edge from mesh. Edge is not deleted and must be deleted afterward separately. - void MESH_Rem_Face(Mesh_ptr mesh, MFace_ptr f): Remove face from mesh. Face is not deleted and must be deleted afterward separately. - void MESH_Rem_Region(Mesh_ptr mesh, MRegion_ptr r): Remove region from mesh. Region is not deleted and must be deleted afterward separately. - void MESH_Set_GModel(Mesh_ptr mesh, GModel_ptr geom): Assign a geometric model handle to the mesh. - int MESH_Change_RepType(Mesh_ptr mesh, int nurep): Change the representation type of the mesh. This routine can be used to modify the representation type dynamically to suit different algorithms. However, the cost of making the change and reordering all adjacencies and creating or deleting entities has to be considered while invoking this routine. Also, once a conversion is made from a full representation to a reduced representation, not all information may be retrievable when switching back to a full representation. (particularly classification information, i.e., relationship of mesh entities to the geometric model). #### 3.3 Mesh Vertex Object - MVertex_ptr MV_New(Mesh_ptr mesh): Create a new vertex object. No geometric or topological information is embedded in the vertex when it is created. The vertex only knows which mesh it belongs to. The ID of the vertex is set by this function. - void MV_Delete(MVertex_ptr mvertex): Delete the vertex. Deletes all topological and geometric information embedded in the vertex. - void MV_Set_Coords(MVertex_ptr mvertex, double *xyz): Set the coordinates of the vertex. - void MV_Set_GEntity(MVertex_ptr mvertex, GEntity_ptr gent): Set the geometric model entity on which vertex is classified. - void MV_Set_GEntDim(MVertex_ptr mvertex, int gdim): Set topological dimension of model entity on which vertex is classified. - void MV_Set_GEntID(MVertex_ptr mvertex, int gid): Set ID of model entity on which vertex is classified. - void MV_Add_AdjVertex(MVertex_ptr mvertex, MVertex_ptr adjvertex): Add neighboring vertex, adjvertex, to ajdacent vertex list of vertex, mvertex. - void MV_Rem_AdjVertex(MVertex_ptr mvertex, MVertex_ptr adjvertex): Delete neighboring vertex of given vertex. - void MV_Set_ID(MVertex_ptr mvertex, int id): Explicitly set ID of a vertex and overwrite the ID set by the MV_New operator. Does not check for duplication of edge IDs. - Mesh_ptr MV_Mesh(MVertex_ptr mv): Returns the mesh that this vertex belongs to. - int MV_ID(MVertex_ptr mvertex): Returns the ID of the vertex. - int MV_GEntDim(MVertex_ptr mvertex): Returns the dimension of the geometric model entity that the vertex is classified on. Returns -1 if not known. - int MV_GEntID(MVertex_ptr mvertex): Returns the ID of the geometric model entity that the vertex is classified on. Returns 0 if this information is not known. - GEntity_ptr MV_GEntity(MVertex_ptr mvertex): Returns a pointer or handle to the geometric model entity that the vertex is classified on. Returns NULL if this information is not known. - void MV_Coords(MVertex_ptr mvertex, double *xyz): Returns the coordinates of the vertex. - int MV_Num_AdjVertices(MVertex_ptr mvertex): Returns the number of edge connected neighboring vertices of vertex. Not efficient for all representations. - int MV_Num_Edges(MVertex_ptr mvertex): Returns the number of edges connected to the vertex. - int MV_Num_Faces(MVertex_ptr mvertex): Returns the number of faces connected to the vertex. - int MV_Num_Regions(MVertex_ptr mvertex): Returns the number of regions connected to the vertex - List_ptr MV_AdjVertices(MVertex_ptr mvertex): List of adjacent or edge connected neighboring vertices of vertex. - List_ptr MV_Edges(MVertex_ptr mvertex): List of edges connected to the vertex. - List_ptr MV_Faces(MVertex_ptr mvertex): List of faces connected to the vertex. - List_ptr MV_Regions(MVertex_ptr mvertex): List of regions connected to the vertex. #### 3.4 Mesh Edge Object - **MEdge_ptr ME_New(Mesh_ptr mesh):** Create a new edge object. No topological information is embedded in the edge when it is created. The edge only knows which mesh it belongs to. The ID of the edge is set by this function. - void ME_Delete(MEdge_ptr medge): Delete the edge. Deletes all topological information embedded in the edge. - void ME_Set_GEntity(MEdge_ptr medge, GEntity_ptr gent): Set the geometric model entity on which the edge is classified. - void ME_Set_GEntDim(MEdge_ptr medge, int gdim): Set the topological dimension of model entity on which edge is classified. - void ME_Set_GEntID(MEdge_ptr medge, int gid): Set ID of model entity on which edge is classified. - void ME_Set_ID(MEdge_ptr medge, int id): Explicitly set ID of an edge and overwrite the ID set by the ME_New function. Does not check for duplication of edge IDs. - void ME_Set_Vertex(MEdge_ptr medge, int i, MVertex_ptr vertex): Set the i'th vertex of the edge. i can be 0 or 1. - void ME_Replace_Vertex(MEdge_ptr medge, MVertex_ptr vert, MVertex_ptr nuvert): Replace i'th vertex by new vertex. - Mesh_ptr ME_Mesh(MEdge_ptr medge): Returns the mesh that this edge belongs to. - int ME_ID(MEdge_ptr medge): Returns the ID of the vertex. Returns -1 if not known. - int ME_GEntDim(MEdge_ptr medge): Returns the dimension of the geometric model entity that the vertex is classified on. Returns -1 if not known. - int ME_GEntID(MEdge_ptr medge): Returns the ID of the geometric model entity that the vertex is classified on. Returns 0 if this information is not known. - GEntity_ptr ME_GEntity(MEdge_ptr medge): Returns a pointer or handle to the geometric model entity that the vertex is classified on. Returns NULL if this information is not known. - int ME_Num_Faces(MEdge_ptr medge): Returns the number of faces connected to the edge. - int ME_Num_Regions(MEdge_ptr medge): Returns the number of regions connected to the edge. - MVertex_ptr ME_Vertex(MEdge_ptr medge, int i): Returns the i'th vertex of the edge. i=0 returns the first vertex and i=1 returns the second vertex. - MVertex_ptr ME_OppVertex(MEdge_ptr medge, MVertex_ptr ov): Return the vertex opposite to given vertex in edge. - int ME_UsesEntity(MEdge_ptr medge, MEntity_ptr mentity, int etype): Check if edge uses given lower dimension entity, mentity. The dimension of the entity is specified by the etype variable. For an edge, the only lower dimensional entity is a vertex. If the edge uses the vertex, the function returns 1; otherwise it returns 0. If any other type of entity is specified, the function returns 0. - List_ptr ME_Faces(MEdge_ptr medge): Returns the set of faces using this edge. - List_ptr ME_Regions(MEdge_ptr medge): Returns the set of regions using this edge. - MEdge_ptr MVs_CommonEdge(MVertex_ptr v1, MVertex_ptr v2): Return the edge connecting vertices v1 and v2, if it exists. If such an edge does not exist, the function returns 0. - double ME_Len(MEdge_ptr e): Return the length of the straight line connecting the two vertices of the edge. - double ME_LenSqr(MEdge_ptr e): Return the square of the length of the straight line connecting the two vertices of the edge. - void ME_Vec(MEdge_ptr e, double *evec): Return the vector going from the first vertex of the edge to the second vertex of the edge. #### 3.5 Mesh Face Object - MFace_ptr MF_New(Mesh_ptr mesh): Create a new face object. No topological information is embedded in the face when it is created. The face only knows which mesh it belongs to. The ID of the face is set by this function. - **void** MF_Delete(*MFace_ptr* mface): Delete the face. Delete all topological information embedded in the face. - void MF_Set_GEntity(MFace_ptr mface, GEntity_ptr gent): Set the geometric model entity on which the edge is classified. - void MF_Set_GEntDim(MFace_ptr mface, int gdim): Set the dimension of the geometric model entity on which the face is classified. - void MF_Set_GEntID(MFace_ptr mface, int gid): Set the ID of the geometric model entity on which the face is classified. - void MF_Set_ID(MFace_ptr mface, int id): Explicitly set ID of an edge and overwrite the ID set by the MF_New operator. Does not check for duplication of face IDs. - void MF_Set_Edges(MFace_ptr mface, int n, MEdge_ptr *edges, int *dirs): Set the edges of the face along with their directions. The ordered set of edge pointers and their directions are passed in through arrays along with the number of edges. The edges are assumed to be ordered clockwise around the face. If an edge direction is along the clockwise direction of the face then the entry in the 'dirs' array must be 1; otherwise it must be 0. This function is relevant only for full representations in MSTK. - void MF_Set_Vertices(MFace_ptr mface, int n, MVertex_ptr *verts): Set the vertices of the face. The ordered set of vertices is passed in through an array along with the number of vertices. The vertices are assumed to be ordered clockwise around the face. This function is relevant only for reduced representations in MSTK. - void MF_Replace_Edge(MFace_ptr mface, MEdge_ptr edge, MEdge_ptr nuedge, int dir): Replace an edge in the face with another edge. The direction in which the new edge is used in the face must also be supplied. This function is relevant only for full representations in MSTK. - void MF_Replace_Vertex(MFace_ptr mface, MVertex_ptr mvertex, MVertex_ptr nuvertex): Replace a vertex in the face with another vertex. This function is relevant only for reduced representations in MSTK. - void MF_Replace_Edge_i(MFace_ptr mface, int i, MEdge_ptr nuedge, int dir): Replace the i'th edge in the face with another edge. The direction in which the new edge is used in the face must also be supplied. This function is relevant only for full representations in MSTK. - void MF_Replace_Vertex_i(MFace_ptr mface, int i, MVertex_ptr nuvertex): Replace the i'th vertex in the face with a new vertex. This function is relevant only for reduced representations in MSTK. - Mesh_ptr MF_Mesh(MFace_ptr mf): Returns the mesh that this mesh belongs to. - int MF_ID(MFace_ptr mface): Returns the ID of the face. Returns 0 if not known. - int MF_GEntDim(MFace_ptr mface): Returns the dimensions of the geometric model entity that the vertex is classified on. Returns -1 if not known. - int MF_GEntID(MFace_ptr mface): Returns the ID of the geometric model entity that the vertex is classified on. Returns 0 if this information is not known. - GEntity_ptr MF_GEntity(MFace_ptr mface): Returns a pointer or handle to the geometric model entity that the vertex is classified on. Returns NULL if this information is not known. - int MF_Num_Vertices (MFace_ptr mface): Returns the number of vertices of the face. - int MF_Num_Edges(MFace_ptr mface): Returns the number of edges of the face. - int MF_Num_AdjFaces(MFace_ptr mface): Returns the number of adjacent faces of a face. This operator is relevant only in planar or surface meshes, i.e., for boundary faces not connected to any regions. - List_ptr MF_Vertices (MFace_ptr mface, int dir, MVertex_ptr mvert): Return the ordered set of the vertices of the face. The vertices are ordered in ccw direction while looking down the face 'normal', if 'dir' is 1 and in the cw direction, if 'dir' is 0. If 'mvert' is specified, the vertex set is reordered so that it is the first vertex (This argument will be added soon to the function. For now, omit this argument). The behavior of this function can be illustrated using Figure 1. For the face shown in the figure, a vertex set with ccw ordering or 'dir' = 1 is V_0, V_1, V_2, V_3 and a vertex set with cw ordering or 'dir' = 0 is V_0, V_3, V_2, V_1 . A vertex set with ccw ordering starting with vertex V_2 is V_2, V_3, V_0, V_1 . Figure 1: Face definition List_ptr MF_Edges(MFace_ptr mface, int dir, MVertex_ptr mvert): Return the ordered set of edges of the face. The edges are ordered in the ccw while looking down the face 'normal' if dir is 1 and in the cw if dir is 0. If 'mvert' is specified, the edge set is reordered so that the first edge in the set contains this vertex. More precisely, if 'dir' is 1, and the first edge is 'e' used in the face in direction 'd', then $ME_Vertex(e, d) = mvert$. With reference to Figure 1, the edges of the face in the ccw direction or 'dir' = 1 are E_0, E_1, E_2, E_3 and in the opposite dir are E_3, E_2, E_1, E_0 . If 'mvert' or the starting vertex is specified as V_2 , the edge set in ccw direction or 'dir' = 1 is E_2, E_3, E_0, E_1 and in the opposite direction is E_1, E_0, E_3, E_2 . List_ptr MF_AdjFaces(MFace_ptr mface): List of adacent faces of a face. This operator is relevant only in planar or surface surface meshes, i.e., for boundary faces not connected to any regions. int MF_EdgeDir(MFace_ptr mface, MEdge_ptr medge): Returns the direction in which the face uses the given edge. If the faces use the edge in the positive direction, the function returns 1; otherwise it returns 0. int MF_EdgeDir_i(MFace_ptr mface, int i): Returns the direction in which the face uses its i'th edge. If the face uses the edge in the positive direction the function returns - 1; otherwise it returns 0; - int MF_UsesEntity(MFace_ptr mface, MEntity_ptr mentity, int type): Check if the face uses the given lower dimension entity, 'mentity'. The type of the entity is specified by the 'etype' variable. For a face, a lower dimensional entity can be a vertex or an edge. If the face uses the vertex or the edge, the function returns 1; otherwise it returns 0. If any other type of entity is specified, the function returns 0. - List_ptr MF_Regions(MFace_ptr mface): Return the set of regions connected to the face. If the face is not used by any regions, the function returns NULL to indicate that the set is empty. If not the set may contain one or two regions. - $MRegion_ptr$ MF_Region($MFace_ptr$ mface, int side): Returns the region on the specified side of the face. The positive side of the face (side = 1) is the side towards which the face normal points. The negative side of the face (side = 0) is the opposite side. - void MF_Coords(MFace_ptr mface, int *n, double (*xyz)[3], int dir): Returns the coordinates of the face vertices in an array along with the number of vertices. If 'dir' is 1, the coordinates are returned with a ccw ordering while looking down the face normal; if 'dir' is 0, they are returned with a cw ordering (See Figure 1). #### 3.6 Mesh Region Object - MRegion_ptr MR_New(Mesh_ptr mesh): Create a new region object. No topological information is embedded in the region when it is created. The region only knows which mesh it belongs to. The ID of the region is set by this function. - void MR_Delete(MRegion_ptr mregion): Delete the region. Deletes all topological information embedded in the edge. - void MR_Set_GEntity(MRegion_ptr mregion, GEntity_ptr gent): Set the geometric model entity on which the edge is classified. - void MR_Set_GEntDim(MRegion_ptr mregion, int gdim): Set the dimension of the geometric model entity on which the edge is classified. - void MR_Set_GEntID(MRegion_ptr mregion, int gid): Set the ID of the geometric model entity on which the edge is classified. - void MR_Set_ID(MRegion_ptr mregion, int id): Explicitly set ID of an edge and overwrite the ID set by the MR_New function. Does not check for duplication of region IDs. - void MR_Set_Faces(MRegion_ptr mregion, int nf, MFace_ptr *mfaces, int *dirs): Set the faces of the region along with their directions. The unordered set of faces and their directions are passed in through arrays along with the number of faces. If the normal of the face points out of the region, the associated direction to be passed in is 1; otherwise it is 0. This function is only relevant for full representations in MSTK. - void MR_Set_Vertices(MRegion_ptr mregion, int nv, MVertex_ptr *mvertices): Set the vertices of the region. This function is relevant for reduced representations only. For standard elements, the vertices must be ordered as indicated in Appendix B. This function does not apply for defining general regions since there cannot be any implicit ordering. - void MR_Replace_Face(MRegion_ptr mregion, MFace_ptr mface, MFace_ptr nuface, int dir): Replace a face of the region with another edge. The direction in which the new face is used in the region must also be supplied. This function is only relevant for full representations in MSTK. - void MR_Replace_Vertex(MRegion_ptr mregion, MVertex_ptr mvertex, MVertex_ptr nuvertex): Replace a vertex of a region with another vertex. This function is relevant only for reduced representations in MSTK. - void MR_Replace_Face_i(MRegion_ptr mregion, int i, MFace_ptr mface, int dir): Replace the i'th face in the region with another face. The direction in which the new face is used in the region must also be supplied. This function is only relevant for full representations in MSTK. - void MR_Replace_Vertex_i(MRegion_ptr mregion, int i, MVertex_ptr mvertex): Replace the i'th vertex of the region with another vertex. This function is only relevant for reduced representations in MSTK. - Mesh_ptr MR_Mesh(MRegion_ptr mregion): Returns the mesh that the region belongs to. - int MR_ID(MRegion_ptr mregion): Returns the ID of the region. Returns 0 if not known. - int MR_GEntDim(MRegion_ptr mregion): Returns the dimension of the geometric model entity the region is classified on. Always returns 3 since a mesh region can be classified only on a model region. - int MR_GEntID(MRegion_ptr mregion): Returns the ID of the geometric model entity that the region is classified on. Returns 0 if not known. - GEntity_ptr MR_GEntity(MRegion_ptr mregion): Returns a pointer or handle to the geometric model entity that the vertex is classified on. Returns NULL if this information is not known. - int MR_Num_Vertices(MRegion_ptr mregion): Returns the number of vertices of a region. - int MR_Num_Edges(MRegion_ptr mregion): Returns the number of edges of a region. - int MR_Num_Faces(MRegion_ptr mregion): Returns the number of faces of a region. - int MR_Num_AdjRegions(MRegion_ptr mregion): Returns the number of adjacent regions of a region, i.e., regions sharing a face with this region. - List_ptr MR_Vertices(MRegion_ptr mregion): Returns the set of vertices of a region. For standard elements the vertices are ordered as indicated in Appendix B. For non-standard elements the set is unordered. - List_ptr MR_Edges(MRegion_ptr mregion): Return the <u>unordered</u> set of edges of a region. - List_ptr MR_Faces(MRegion_ptr mregion): Returns the set of faces of a region. - List_ptr MR_AdjRegions(MRegion_ptr mregion): Returns the set of adjacent regions of a region, i.e., regions sharing a face with this region. The set is not ordered. - int MR_FaceDir(MRegion_ptr mregion, MFace_ptr mface): Returns the direction in which the region uses the given face. Returns 1 if the face normal points out of the region and returns 0 if the face normal points into the region. - int MR_FaceDir_i(MRegion_ptr mregion, int i): Returns the direction in which the region uses the i'th face. Returns 1 if the face normal points out of the region and returns 0 if the face normal points into the region. - int MR_UsesEntity(MRegion_ptr mregion, MEntity_ptr ment, int type): Check if the region uses the given lower dimension entity, 'mentity'. The type of the entity is - void MR_Coords(MRegion_ptr mregion, int *n, double (*xyz)[3]): Returns the coordinates of the region vertices in an array along with the number of vertices. For standard elements, the ordering is as given in Appendix B. For non-standard elements, the ordering is arbitrary. #### 3.7 Generic Entity Object The following functions operate on generic mesh entities of type $MEntity_ptr$. This implies that variables of type $MVertex_ptr$, $MEdge_ptr$, $MFace_ptr$, $MRegion_ptr$ can all be passed in place of $MEntity_ptr$ variables in the following functions. - int MEnt_ID(MEntity_ptr mentity): Returns the ID of a generic entity. - int MEnt_Dim(MEntity_ptr mentity): Returns the topological dimension or type of generic entity. - Mesh_ptr MEnt_Mesh(MEntity_ptr mentity): Returns the mesh that the entity belongs to. - int MEnt_GEntDim(MEntity_ptr mentity): Returns the dimension of the geometric model entity that the entity is classified on. - GEntity_ptr MEnt_GEntity(MEntity_ptr mentity): Returns a pointer or handle to geometric model entity that the entity is classified on. #### 3.8 Entity Marks Entity marks or markers are a way of tagging entities. Such functionality is useful in algorithms which must keep track of processed entities to avoid duplication of work. An example of such an operation is creating a union of entity sets while extracting upward adjacency information such as the regions connected to an edge. - int MSTK_GetMarker(): Returns a unique marker ID which may be used to tag entities. - void MEnt_Mark(MEntity_ptr ent, int mkr): Mark an entity with the given marker 'mkr'. - int MEnt_IsMarked(MEntity_ptr ent, int mkr): Check if an entity is marked with the given marker 'mkr'. - void MEnt_Unmark(MEntity_ptr ent, int mkr): Unmark an entity with respect to the given marker 'mkr' - void List_Mark(List_ptr list, int mkr): Mark a set of entities with given marker. - void List_Unmark(List_ptr list, int mkr): Unmark a set of entities with respect to the given marker. - void MSTK_FreeMarker(int mkr): Release the marker ID given by MSTK_GetMarker() so that it can be reused. Care must be taken to unmark all entities marked with this marker ID before releasing it. If not, subsequent operations with reassigned marker will find a tag on some entities and mistake them for being processed. #### 3.9 Mesh Modification int ME_Swap2D(MEdge_ptr e, MEdge_ptr *enew, MFace_ptr fnew[2]): Swap an edge in a triangular mesh. No checks are performed for topological or geometric validity. MFace_ptr MFs_Join(MFace_ptr f1, MFace_ptr f2, MEdge_ptr e): Join two faces along common edge and create new face by eliminating the common edge as shown in Figure 2. If 'f1' has 'n1' edges and 'f2' has 'n2' edges, then the new face has ('n1'+'n2'-2) edges. Figure 2: Joining two faces (a) Two faces F_1 and F_2 sharing a common edge (b) New pentagonal face F_{new} created by eliminating the common edge. #### 3.10 Utilities - void MSTK_Report(char *module, char *message, ErrType severity): Error handler for MSTK. 'module' is the name of the function in which the error occurs. 'message' is the error message and is recommended to be less than 1024 characters in length. 'severity' is an error code and can be MESSG, WARN, ERROR or FATAL. If the error code is FATAL, the program will quit after printing the error. If the same message is repeated successively, then the message is printed only the first time. - void List_PrintID(List_ptr 1): Debugging utility to print the IDs of the entities in a set. - void MV_Print(MVertex_ptr v, int lev): Debugging utility to print information about a mesh vertex, v. The argument lev controls the level of detail of the information printed. lev = 0 prints the minimum information, i.e., vertex pointer, its ID and its coordinates. If lev = 1, the function prints classification information for the vertex (if available), i.e., ID and dimension of the model entity that the vertex is on. If lev > 1, then upward detailed adjacency information is also printed for the vertex, i.e., information is printed about the edges, faces and regions connected to the vertex. - void ME_Print($MEdge_ptr$ e, int lev): Debugging utility to print information about a mesh edge, e. The argument lev controls the level of detail of the information printed. lev = 0 prints the minimum information, i.e., edge pointer, its ID and the IDs of its two vertices. If lev = 1, the function prints classification information for the edge (if available), i.e., ID and dimension of the model entity that the edge is on. Also, more detailed vertex information printed in this case. If lev > 1, the function prints detailed upward adjacency information for the edge, i.e., information is printed about the faces and regions connected to the edge. - void MF_Print(MFace_ptr f, int lev): Debugging utility to print information about a mesh face, f. The argument lev controls the level of detail of the information printed. lev = 0 prints the minimum information, i.e., the face pointer and its ID. If lev = 1, the function prints classification information for the edge (if available), i.e., ID and dimension of the model entity that the face is on. Also, a signed list of the edges of the face is printed. If lev > 1, the function prints detailed downward and upward adjacency information for the face, i.e., information is printed about the edges and vertices of the face, and about the regions connected to the face. - void MR_Print(MRegion_ptr r, int lev): Debugging utility to print information about a mesh region, r. The argument lev controls the level of detail of the information printed. $\mathbf{lev} = 0$ prints the minimum information, i.e., region pointer and its ID. If $\mathbf{lev} = 1$, the function prints classification information for the region (if available), i.e., ID of the model entity that the region is on. Also, a signed list of the faces of the region is printed. If $\mathbf{lev} > 1$, the function prints detailed downward adjacency information for the region, i.e., information is printed about the faces, edges and vertices forming the region. # A Mesh Representation Types in MSTK # B Conventions for Vertex, Edge Numbering in Standard Region Types #### C MSTK File Format #### C.1 MSTK ASCII File Format ``` # This is a comment # The string "MSTK" and File version number (1.0) MSTK Ver # char *reptype - Type of representation # int NV, NE, NF, NR - Number of vertices, edges, face, regions RepType NV NE NF NR # VERTEX INFO # Each record has \# double X, Y, Z Coordinates # int Mdim - Topological type or dimension of model entity that the vertex is on # int Mid - ID of model entity the vertex is on # Mdim and Mid can be -1 and 0 resp. if model info. is absent X_Coord Y_Coord Z_Coord Mdim Mid X_Coord Y_Coord Z_Coord Mdim Mid # Repeated NV times # EDGE INFO - present only if NE \neq 0 # Keyword 'edges' followed by edge records # Each edge record has # int Vid_1, Vid_2 - IDs of first, second vertex of edge # int Mdim, Mid edges Vid_1 Vid_2 Mdim Mid Vid_1 Vid_2 Mdim Mid # Repeated NEdges times ``` ``` # FACE INFO - present only if NF \neq 0 # Keyword 'faces' # char *FLtype: Keyword for lower order entity describing # Values: Vertex, Edge (case insensitive), e.g. VeRteX or EDGE faces FLtype # If face described by vertices, then each face record has # int NFV - Number of face vertices \# int Vid_1 - ID of first vertex of face # int Vid_2 - ID of second vertex of face # . . . # int Vid_1 - ID of NFV'th vertex of face # int Mdim, Mid NFV Vid_1 Vid_2 ... Vid_NFV Mdim Mid NFV Vid_1 Vid_2 ... Vid_NFV Mdim Mid # Repeated NFaces times # If face described by edges, then each face record has # int NFE - Number of face edges \# int \pm Eid_1 - signed ID of first edge of face \# int \pm Eid_2 - signed ID of second edge of face # . . . \# int \pm Eid_NFE - signed ID of NFE'th edge of face # int Mdim, Mid # # if sign of edge is +, face uses edge in direction it was defined # if sign of edge is -, face uses edge in opposite direction NFE \pm \text{Eid}_{-1} \pm \text{Eid}_{-2} ... ±Eid_NFE Mdim Mid \pm \text{Eid}_{-1} \pm \text{Eid}_{-2} \dots ±Eid_NFE Mdim Mid NFE # Repeated NFaces times \# REGION INFO - present only if NR \neq 0 # Keyword 'regions' # char *RLtype - keyword for lower order entity describing ``` region ``` # Values: Vertex, Face (case insensitive), e.g. VERtex or faCE regions RLtype # if region described by vertices, then each region record has # int NRV - Number of region vertices # int Vid_1 - ID of first vertex of region # int Vid_2 - ID of second vertex of region # . . . # int Vid_NFE - ID of NRV'th vertex of region # int Mid, (NOTE: Mdim is not specified, since it has to be 3) Vid_1 Vid_2 Vid_NRV Mid NRV Vid_1 Vid_2 ... Vid_NRV # Repeat NR times # if region described by faces, then each region record has # int NRF - Number of region faces # int Fid_1 - signed ID of first face of region # int Fid_2 - signed ID of second face of region # . . . # int Fid_NRF - signed ID of NRF'th face of region # int Mdim, Mid # # if sign of face is +, face normal points out of region # if sign of edge is -, face normal points into region \pmFid_1 \pmFid_2 \pm Fid_NRF Mid \pm \text{Fid}_{-1} \pm \text{Fid}_{-2} \dots NRF ±Fid_NRF Mid # Repeated NR times # NOT IMPLEMENTED # VERTEX ATTRIBUTES # int NVA - Number of Vertex attributes # char *VA_name_1 - Name of first vertex attribute ``` ``` # int VA_type_1 - Type of first vertex attribute # int VA_dim_1 - Dimension of first vertex attribute # char *VA_name_2 - Name of second vertex attribute # int VA_type_2 - Type of second vertex attribute # int VA_dim_2 - Dimension of first vertex attribute # # . . . # char *VA_name_NVA - Name of NVA'th vertex attribute # int VA_type_NVA - Type of NVA'th vertex attribute # int VA_dim_NVA - Dimension of NVA'th vertex attribute \# VA_type \ can \ be \ 1 \ (int), \ 2 \ (double), \ 3 \ (string) \# VA_dim = 1 \text{ for scalars, } VA_dim = length \text{ of vector for vector} # VA_dim can only be 1 when VA_type is string NVA VA_name_1 VA_type_1 VA_dim_1 VA_name_2 VA_type_2 VA_dim_2 VA_dim_NVA VA_type_NVA VA_dim_2 # For each vertex attribute record, set of attribute values # E.G., there are 3 attributes for each vertex: # a scalar int, a vector of 3 doubles and a string VA_int VA_double_1 VA_double_2 VA_double_3 VA_string VA_int VA_double_1 VA_double_2 VA_double_3 VA_string # Repeated NV times ``` ``` # EDGE ATTRIBUTES ``` # Similar to Vertex attribute description NEA EA_name_1 EA_type_1 EA_dim_1 EA_name_2 EA_type_2 EA_dim_2 . EA_dim_NEA EA_type_NEA EA_dim_2 # For each edge attribute record, set of attribute values # E.G., a scalar int, a scalar double and a string EA_int EA_double EA_string EA_int EA_double EA_string . . # Repeated NE times #### # FACE ATTRIBUTES # Similar to Vertex attribute description NFA FA_name_1 FA_type_1 FA_dim_1 FA_name_2 FA_type_2 FA_dim_2 FA_dim_NFA FA_type_NEA FA_dim_2 # For each face attribute record, set of attribute values # E.G., a vector of 2 doubles and a string FA_double_1 FA_double_2 FA_double_1 FA_double_2 . . . # Repeated NF times #### # REGION ATTRIBUTES # Similar to Vertex attribute description #### NRA RA_name_1 RA_type_1 RA_dim_1 RA_name_2 RA_type_2 RA_dim_2 . RA_dim_NRA RA_type_NRA RA_dim_NRA # For each Region attribute record, set of attribute values # E.G., a vector of 3 ints RA_int_1 RA_int_2 RA_int_3 RA_int_1 RA_int_2 RA_int_3 . . . # Repeated NR times ## D Example program NOTE: This program is included in the distribution. ``` #include <stdio.h> #include <stdlib.h> #include "MSTK.h" #include "test.h" int main(int argc, char *argv[]) { int i, idx, idx2, ok, edir, nv, ne; double xyz[3]; char meshname [256]; Mesh_ptr mesh; MVertex_ptr v; MEdge_ptr e; MFace_ptr f; GEntity_ptr gent; List_ptr fedges; /* Initialize MSTK - Always do this even if it does not seem to matter in this version of MSTK */ MSTK_Init(); /* Load the mesh */ strcpy(meshname,argv[1]); strcat(meshname,".mstk"); mesh = MESH_New(UNKNOWN_REP); ok = MESH_InitFromFile(mesh,meshname); if (!ok) { fprintf(stderr, "Cannot file input file %s\n\n\n", meshname); exit(-1); } ``` ``` /* Print some info about the mesh */ nv = MESH_Num_Vertices(mesh); for (i = 0; i < nv; i++) { v = MESH_Vertex(mesh,i); /* Basic info */ printf("\n"); printf("Vertex: 0x%-x ID: %-d ",v,MV_ID(v)); /* Classification w.r.t. geometric model */ if (MV_GEntDim(v) == -1) fprintf(stderr, "Unknown Classification\n"); else { printf("GEntID: %-d GEntDim: %-d\n",MV_GEntID(v),MV_GEntDim(v)); if ((gent = MV_GEntity(v))) printf("Model entity pointer: 0x%-x\n",gent); } /* Coordinates */ MV_Coords(v,xyz); printf("Coords: %16.8lf %16.8lf %16.8lf\n",xyz[0],xyz[1],xyz[2]); } idx = 0; while (f = MESH_Next_Face(mesh,&idx)) { /* Basic info */ printf("\n"); printf("Face: 0x%-x ID: %-d ",f,MF_ID(f)); /* Classification w.r.t. geometric model */ if (MF_GEntDim(f) == -1) fprintf(stderr, "Unknown Classification\n"); else { printf("GEntID: %-d GEntDim: %-d\n", MF_GEntID(f), MF_GEntDim(f)); ``` ``` if ((gent = MF_GEntity(f))) printf("Model entity pointer: 0x%-x\n",gent); } printf("\n"); /* Edges of face */ fedges = MF_Edges(f,1,0); ne = List_Num_Entries(fedges); printf("Edges: %-d\n",ne); printf("Object GEntID GEntDim Vertex IDs\n"); idx2 = 0; i = 0; while (e = List_Next_Entry(fedges,&idx2)) { edir = MF_EdgeDir_i(f,i); if (edir) %-d %-d n", printf("0x%-8x %-8d %-8d %-1d e, ME_ID(e), ME_GEntID(e), ME_GEntDim(e), MV_ID(ME_Vertex(e,0)),MV_ID(ME_Vertex(e,1))); else printf("0x%-8x %-8d %-8d %-d %-d n'', %-1d e,-ME_ID(e),ME_GEntID(e),ME_GEntDim(e), MV_ID(ME_Vertex(e,0)),MV_ID(ME_Vertex(e,1))); i++; } printf("\n"); List_Delete(fedges); /* Write out a copy of the mesh */ strcpy(meshname,argv[1]); strcat(meshname, "-copy.mstk"); MESH_WriteToFile(mesh,meshname); /* No need to delete a mesh if program ends right afterwards */ MESH_Delete(mesh); return 1; ``` }